
Rotation Averaging and Strong Duality

Fredrik Kahl

Chalmers University of Technology



Collaborators

Carl Olsson             Anders Eriksson      Viktor Larsson          Tat-Jun Chin

Chalmers/Lund       University of ETH Zurich University of
Queensland Adelaide



Structure from Motion

Visual Localization

Visual Navigation



Outline

Main topic: Semidefinite relaxations for optimization over SO(3)

- Introduction

- Problem formulation and examples

- Analysis: Relaxations, tightness and extreme points

- In depth: Rotation averaging

- Conclusions
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Rotation averaging

- Goal: Recover camera poses given relative pairwise measurements



Hand-eye calibration



The Chordal distance

- Defined as the Euclidean distance in the embedding space,

- Equivalent to:



Registration of points, lines and planes



Problem formulation

Let

where each .



How to overcome the problem of non-convexity?

- One idea: Relax some constraints and solve relaxed problem

- How to relax?

1. Linearize
2. Convexify

- Tightness: When is the solution to the original and relaxed problem the same?



Linearization

- Longuet-Higgins, 1981

- Stefanovic, 1973

- Thompson, 1959

- Chasles, 1855

- Hesse, 1863

- Hauck, 1883



Convexification

- Quasi-convexity

- Semidefinite relaxations

F. Kahl, R. Hartley, PAMI 2008

Q. Ke, T. Kanade, PAMI 2007

F. Kahl, D. Henrion, IJCV 2007

C. Aholt, S. Agarwal, R. Thomas, ECCV 2012



Estimating a single rotation



Estimating a single rotation

- Is the relaxation always tight?

- Are all minimizers Λ* of the convex relaxation rank one?

Original problem Relaxed problem



Empirical result for 1000 random Q:s





Sums of squares polynomials

Multi-variate polynomial p(r) is a sums of squares (SOS) if



The SO(3)-variety



A theorem by Blekherman et al, J. Amer. Math. Soc., 2016 



Extreme points

- Are all minimizers Λ* of the convex relaxation rank one?

Original problem Relaxed problem



Empirical result for 1000 random Q:s for SO(3)xSO(3)



Rotation averaging in Structure from Motion



A possible pipeline:

1. Estimate relative epipolar geometries (5-point algorithm)

2. Given relative rotations, estimate absolute rotations

3. Compute camera positions and 3D points (L -optimization)

Estimate camera poses

∞
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Rotation averaging

- Goal: Recover camera poses given relative pairwise measurements
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Rotation averaging

- Problem formulation

Graph (V,E) where V = camera poses and E = relative rotations
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Rotation averaging

- Problem formulation

Graph (V,E) where V = camera poses and E = relative rotations



- Non-convex problem

- Three local minima

Rotation averaging

Ground truth Local minimum



- Background

- Well established theory on duality for convex optimization

- Duality is at the core of many existing optimization algorithms

- Less understood about the non-convex case

- Aims

- Can we obtain guarantees of global optimality?

- How to design efficient optimization algorithms?

Optimization



Duality



Duality

- Lagrangian:

- Dual function:



Duality

Primal problem Dual problem

(P) (D)

Since (D) is a relaxation of (P), we have



Primal and dual rotation averaging

Dual problem

(P)

(D)

Lagrangian

Primal problem



Concurrent work

D. Cifuentes, S. Agarwal, P. Parrilo, R. Thomas,

”On the Local Stability of Semidefinite Relaxations”, Arxiv 2017



Main Result

Note : Any local minimizer that fulfills this error bound will be global!



Example:

Corollaries



Corollaries

Example: For complete graphs,



Experiments



Further results

- Full analysis with proofs

- New primal-dual algorithm

- More experimental results

A. Eriksson, C. Olsson, F. Kahl, T.J. Chin, to appear PAMI 2019



Conclusions

- Strong duality (= zero duality gap) for rotatation averaging provided
bounded noise levels

- Practically useful sufficient condition for global optimality

- Analysis also leads to efficient algorithm



Future work

- Robust cost functions, e.g., L1 with IRLS

- Further analysis – when is duality gap zero and for what problems?



Point averaging



High-quality night-time images

Seasonal changes, urban; Low-quality night-time images

Seasonal changes, (sub)urban

Visual localization

www.visuallocalization.net
Benchmark challenge and workshop at CVPR 2019

http://www.visuallocalization.net/


Estimating a single rotation

J. Briales and J. Gonzalez-Jimenez, CVPR 2017



A. Eriksson, C. Olsson, F. Kahl, T.-J. Chin

Rotation Averaging and Strong Duality, CVPR 2018

something else here


